Friday, 11 August 2017

Does Google Own The E World

Does Google Own The E World

 If you are even a casual browser on the web, it is specific that you have seen the prevalence of the corporation referred to as Google. Their name is essentially associated with the search engine's capability to pull up info from the web, Google is really included in a very broad variety of various things online. Many people, in the course of their everyday online activities, will use two or 3 Google-controlled and google-developed programs, and numerous will use a lot more. Whether you're wanting to map out a journey or you are simply looking to do some shopping online, it is difficult not to observe how widespread Google is to our online culture.

 "Googling" has ended up being a typically accepted verb, meaning to utilize the Google search engine to discover something and it is simple to see why Google has actually ended up being the number one search method that people utilize when they are exploring the internet. Current estimates hold that the variety of servers that Google has at its disposal number more than 45,000 located at twenty-five locations throughout the world. With this sort of power and search capability at their disposal and with the immense quantities of capital that they have actually earned from offering advertising to their audience, it is clear that Google's presence on the web is a permanent and all including one.

 With the development of Google Mail, Google has provided email to a number of people going beyond the amount of people who utilize Hotmail or Yahoo. From Google Maps, which can tell you how to get where you are going to Google Translate, which can translate text to and from its original language, it is clear to see that Google has sunk deeply into the online landscape.

 Google online search engine

The genuine star of the program, however, is the Google online search engine. This online search engine was what brought the company to its initial, important location online and it is where much of the cash that Google makes from marketing originates from. A current survey revealed that 95 percent of all traffic on the web was performed with using search engines and that out of that 95 percent, the vast bulk of it was performed through Google. Couple this with that more than 50 percent of all purchases made online went through the Google online search engine first, and it is simple to see how Google became an advertising giant.

 Through everything, part of Google's charm is that is corporate policy is well known, that is, that Google thinks that it is possible to be lucrative without being wicked, which a collaborative environment is a lot more helpful than a hierarchy. Google exists as an indication post for the web, taking you where you wish to go, while still managing to supply a lot of the answers to the questions that you have actually been asking.

 "Googling" has become a typically accepted verb, suggesting to use the Google search engine to find something and it is easy to see why Google has actually ended up being the number one search approach that individuals utilize when they are exploring the internet. From Google Maps, which can inform you how to get where you are going to Google Translate, which can equate text to and from its original language, it is clear to see that Google has sunk deeply into the online landscape.

 Couple this with the truth that more than 50 percent of all purchases made online went through the Google search engine initially, and it is simple to see how Google became an advertising giant.

Konkan Tourism

NEET Coaching Classes in Mumbai 

Packers and Movers in Surat    

Old Age Homes in Mumbai

Packers And Movers in Akola

Book Pandit Online for Puja in Mumbai

Mumbai Pune Taxi Service

SSC Coaching Classes in Mumbai 

GMAT Coaching Classes in Mumbai

Website Development Company in Mumbai

Best Website Desinging Companies in India are as follows:-

Call them for Best offers India and International.

Read More

http://troikatech.co/

http://brandlocking.in/

http://leadscart.in/

http://godwinpintoandcompany.com/

http://webdesignmumbai.review/

http://webdevelopmentmumbai.trade/

http://wordpresswebsites.co.in

http://seoservicesindia.net.in/

http://priusmedia.in

http://godwinpintoandcompany.com/

http://clearperceptionscounselling.com/

http://gmatcoachingclasses.online/

http://troikatechbusinesses.com/

http://troikaconsultants.com/

http://webdesignmumbai.trade/

http://webdesignmumbai.trade/

http://troikatechservices.in/

http://brandlocking.com/

http://kubber.in/

http://silveroakvilla.com/

http://igcsecoachingclasses.online/

http://priusmedia.in/

http://troikatechbusinesses.com/

Read More

Contact Details

Troika Tech Services

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station,

Opp. TMT Bus Stop,

Thane – 401107


WordPress Development Company in Mumbai

Are you looking for the best tools and techniques to improve your rankings?

Are you looking for the best tools and techniques to improve your rankings?

 

Seo (SEO) can help your website rank greater in the search engines, offering you more traffic and more conversions.There is no fast repair and instantaneous lead to SEO, it takes some time and a great deal of work. Even if you are new to SEO you can diy, since SEO software application tools assist you get higher ranking.

 

Website Tools

Are you trying to find the best techniques and tools to improve your rankings? In order to achieve great ranking, you require the best tools.

Tools for checking the search engine rankings for defined keywords on your website and or top ranking websites (keyword competitors). Tools for evaluating the keyword density of websites. Tools for monitoring, monitoring, and anticipating Google PageRank. Tools for inspecting backlinks and anchor texts discovered in different search engines and tips for link building. Tools for extracting links and searching sites for broken links. Tools for examining website traffic and visitor tracking. Tools for producing, enhancing, and drawing out meta tags. Tools for obtaining data about domains, such as age and ip address, tools for finding ended domains, and domain recommendation tools. Tools for link building help you from start to complete. All These tools, you can find them at www.sitepromotion-seoeasy.com

 The concept of this website is to integrate different SEO tools, web tools and web designer tools in one location and help webmasters to build a successfull site. It is an integrated suite of web promo seo tools that cover all elements of website optimization and promotion.

 This SEO Tools page has links to the finest SEO Tools on the web and these tools will help you to enhance your website and move your search engine position greater. This SEO tools item includes integrated research tools, keyword density analyzer, ranking screens, ranking report modules, link analysis, ebboks, seo website builders and more. Listed below I have actually assembled a list of seo tools I have found beneficial.

Seo Elite:

New Seo Software! With The Grand Daddy Of All Seo Software, you can Get A Top 5 Google Ranking In Under 30 Days!

 

Send out Unlimited Traffic To Your Website Using Tom Traffic System.

Overall Web Seo Video:

The World's Easiest Step-By-Step System To Consistently Generate Over 500+ Free Search Engine Visitors PER DAY To YOUR Website ... Within 30 Days Or Less!

 How can you find numerous low competition keywords in minutes with only a few clicks of the mouse? Use keyword results Analyzer

 SEO Website Builder - a website structure tool that understands what the search engines really want

 Have you seen this new SEO plan? Now you can quickly get your site on any search engine in a matter of days!

 Do you need to know the secret to more subscribersand sales? Attempt SEO seduction secrets

 Bkack hat SEO Tips:

Now You Can Discover the Secrets Thousands are utilizing to Generate Unlimited Residual Income from Free Search Engine Traffic

 All These tools, you can find them at www.sitepromotion-seoeasy.com

 Tools for examining the search engine rankings for defined keywords on your website and or leading ranking websites (keyword competition). Tools for recovering information about domains, such as age and ip address, tools for finding ended domains, and domain name suggestion tools. This SEO Tools page has links to the best SEO Tools on the internet and these tools will assist you to optimize your website and move your search engine position higher. This SEO tools product includes integrated research study tools, keyword density analyzer, ranking monitors, ranking report modules, link analysis, ebboks, seo website contractors and more. Below I have actually put together a list of seo tools I have actually discovered helpful.

Konkan Tourism

NEET Coaching Classes in Mumbai 

Packers and Movers in Surat    

Old Age Homes in Mumbai

Packers And Movers in Akola

Book Pandit Online for Puja in Mumbai

Mumbai Pune Taxi Service

SSC Coaching Classes in Mumbai 

GMAT Coaching Classes in Mumbai

Website Development Company in Mumbai

Best Website Desinging Companies in India are as follows:-

Call them for Best offers India and International.

Read More

http://troikatech.co/

http://brandlocking.in/

http://leadscart.in/

http://godwinpintoandcompany.com/

http://webdesignmumbai.review/

http://webdevelopmentmumbai.trade/

http://wordpresswebsites.co.in

http://seoservicesindia.net.in/

http://priusmedia.in

http://godwinpintoandcompany.com/

http://clearperceptionscounselling.com/

http://gmatcoachingclasses.online/

http://troikatechbusinesses.com/

http://troikaconsultants.com/

http://webdesignmumbai.trade/

http://webdesignmumbai.trade/

http://troikatechservices.in/

http://brandlocking.com/

http://kubber.in/

http://silveroakvilla.com/

http://igcsecoachingclasses.online/

http://priusmedia.in/

http://troikatechbusinesses.com/

Read More

Contact Details

Troika Tech Services

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station,

Opp. TMT Bus Stop,

Thane – 401107


WordPress Development Company in Mumbai

Thursday, 10 August 2017

Advantages Of Search Engine Optimization For You

Advantages Of Search Engine Optimization For You

There are 2 ways to measure the success of business sites. You can check the page ranking within the internet online search engine as well as the online search engine result page. If you are a service website owner, you need to utilize search engine optimization while benefiting from the many tools and resources the web has to provide your company.

The disadvantage to being a company site owner is that you have to make sure that internet traffic can really find your business site. How will internet users understand your site even exist if they cannot discover it? If you don't take the necessary steps to guarantee your service website is ranked appropriately within the major online search engine; they cannot?

SEO can put your company site potentially within the top ten outcomes on the search engine results. Assist from SEO will not only aid with increasing sales for your business site however likewise increase the circulation of internet traffic to your business site.

Internet search engines drive the bulk of internet traffic. If you can get a good ranking with your service website within the significant search engines, you will stand a terrific opportunity of success, for your organisation site.

There is no need to draw any visitors into your service website, if you do not have relevant content or a website which web users find appealing. Your focus must be to grab their attention when they stumble upon or discover your business site through the search engine.

Then you may desire to consider hiring one, if you are not an SEO professional. SEO professionals can enhance the traffic to your industrial site, while assisting your service to be competitive with other online businesses. SEO's offer lots of services which your company could considerably gain from. Site reporting, search engine submissions, link appeal building, as well as month-to-month maintenance are a few of the important things, which SEO's can offer your company site.

SEO Experts

SEO's enable companies no matter the size to advertise their services and products with the power of the web. If you are uncomfortable, hiring a specific SEO expert, then a search engine optimization company may be right up your alley.

SEO business or private SEO professionals can be a terrific aid, with keeping your site, along with your page rankings. If you choose the best company for your service website, you will eventually see the lead to not only the development of the internet traffic to your site; however also profits.

If you are a service website owner, you ought to use search engine optimization while benefiting from the many tools and resources the web has to provide your business.

The disadvantage to being a business site owner is that you have to ensure that web traffic can actually find your organisation website. Help from SEO will not only aid with increasing sales for your organisation website but likewise increase the flow of internet traffic to your business website. If you can get a decent ranking with your business site within the significant search engines, you will stand a fantastic opportunity of success, for your company site.

SEO experts can enhance the traffic to your business site, while aiding your company to be competitive with other online businesses.

Konkan Tourism

NEET Coaching Classes in Mumbai 

Packers and Movers in Surat    

Old Age Homes in Mumbai

Packers And Movers in Akola

Book Pandit Online for Puja in Mumbai

Mumbai Pune Taxi Service

SSC Coaching Classes in Mumbai 

GMAT Coaching Classes in Mumbai

Website Development Company in Mumbai

Best Website Desinging Companies in India are as follows:-

Call them for Best offers India and International.

Read More

http://troikatech.co/

http://brandlocking.in/

http://leadscart.in/

http://godwinpintoandcompany.com/

http://webdesignmumbai.review/

http://webdevelopmentmumbai.trade/

http://wordpresswebsites.co.in

http://seoservicesindia.net.in/

http://priusmedia.in

http://godwinpintoandcompany.com/

http://clearperceptionscounselling.com/

http://gmatcoachingclasses.online/

http://troikatechbusinesses.com/

http://troikaconsultants.com/

http://webdesignmumbai.trade/

http://webdesignmumbai.trade/

http://troikatechservices.in/

http://brandlocking.com/

http://kubber.in/

http://silveroakvilla.com/

http://igcsecoachingclasses.online/

http://priusmedia.in/

http://troikatechbusinesses.com/

Read More

Contact Details

Troika Tech Services

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station,

Opp. TMT Bus Stop,

Thane – 401107


WordPress Development Company in Mumbai

Wednesday, 9 August 2017

Examine Internet Online search engine and Browse Engine Outcome Page

Examine Internet Online search engine and Browse Engine Outcome Page

 There are two methods to determine the success of service sites. You can inspect the page ranking within the web search engines along with the online search engine result page. You need to use search engine optimization while benefiting from the lots of tools and resources the internet has to use your service if you are a business site owner.

 The disadvantage to being a business website owner is that you have to guarantee that internet traffic can in fact find your service site. How will internet users know your site even exist if they cannot discover it? If you don't take the essential actions to ensure your service website is ranked accordingly within the significant search engines; they cannot?

 Best SEO Company in Mumbai

SEO can position your company site possibly within the top 10 results on the search engine outcomes. Assist from SEO will not just aid with increasing sales for your business site however also increase the flow of internet traffic to your business site.

 Web search engines own the majority of web traffic. If you can get a good ranking with your organisation site within the major search engines, you will stand a great chance of success, for your service website.

 You should guarantee that your service website is attracting internet visitors. There is no have to draw any visitors into your organisation website, if you do not have appropriate material or a site which internet users like. It does not take an extended period for web users to choose if they like or dislike your site (less than 3 seconds typically). When they stumble upon or find your business website through the search engine, your focus needs to be to grab their attention.

 SEO specialists can improve the traffic to your comercial website, while assisting your service to be competitive with other online services. Website reporting, search engine submissions, link popularity structure, as well as month-to-month upkeep are a few of the things, which SEO's can use your company site.

 SEO's allow business no matter the size to market their product or services with the power of the internet. If you are unpleasant, employing a specific SEO expert, then a seo business may be right up your alley.

SEO Expert

 SEO companies or private SEO specialists can be an excellent assistance, with keeping your site, as well as your page rankings. If you select the right company for your service website, you will ultimately see the results in not only the growth of the web traffic to your site; but likewise revenues.

 If you are a company website owner, you must use search engine optimization while benefiting from the many tools and resources the internet has to use your organisation.

 The drawback to being a company website owner is that you have to ensure that internet traffic can in fact find your business website. Assist from SEO will not only aid with increasing sales for your company website but also increase the circulation of web traffic to your company website. If you can get a good ranking with your business site within the major search engines, you will stand a terrific chance of success, for your service site.

 SEO professionals can enhance the traffic to your commercial site, while assisting your organisation to be competitive with other online organisations.

 

Konkan Tourism

NEET Coaching Classes in Mumbai 

Packers and Movers in Surat    

Old Age Homes in Mumbai

Packers And Movers in Akola

Book Pandit Online for Puja in Mumbai

Mumbai Pune Taxi Service

SSC Coaching Classes in Mumbai 

GMAT Coaching Classes in Mumbai

Website Development Company in Mumbai

Best Website Desinging Companies in India are as follows:-

Call them for Best offers India and International.

Read More

http://troikatech.co/

http://brandlocking.in/

http://leadscart.in/

http://godwinpintoandcompany.com/

http://webdesignmumbai.review/

http://webdevelopmentmumbai.trade/

http://wordpresswebsites.co.in

http://seoservicesindia.net.in/

http://priusmedia.in

http://godwinpintoandcompany.com/

http://clearperceptionscounselling.com/

http://gmatcoachingclasses.online/

http://troikatechbusinesses.com/

http://troikaconsultants.com/

http://webdesignmumbai.trade/

http://webdesignmumbai.trade/

http://troikatechservices.in/

http://brandlocking.com/

http://kubber.in/

http://silveroakvilla.com/

http://igcsecoachingclasses.online/

http://priusmedia.in/

http://troikatechbusinesses.com/

Read More

Contact Details

Troika Tech Services

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station,

Opp. TMT Bus Stop,

Thane – 401107


WordPress Development Company in Mumbai

5 Google Ranking Tips

5 Google Ranking Tips
 

A lot of Google ranking tips handle getting inbound links (or back links as they are likewise described) to your website. And for great reason. The more quality inbound links (determined by the rank of the site that the link originates from and the significance of the keyword) you have, the higher your Google Page Rank will be and the more visible you will be to your customers and/or prospects. Here are some techniques to construct your inbound links.

 Submit your website to online search engine directory sites. some directory sites charge a fee however many of them are totally free. Stick to the totally free ones if you're on a tight budget. These can get you some complimentary links back to your site. Register with as lots of as you can. The more links you have into your website, the much better your page rank.


 This is one of the most overlooked but finest of Google ranking suggestions. When you get involved in online forums and include the link to your website in your signature, you will get links back to your website.

 Create an ezine (or newsletter). Making the effort to create a newsletter that you can send to subscribers is definitely worth it. This keeps your visitors approximately date with exactly what you are doing and brings them back to visit your site on a constant basis. You can also submit your ezine to an ezine directory which will link back to your website and give you more complimentary incoming links.

 Which is the Best Website Designing Company in Mumbai?

Benefit from short article marketing. If you can develop (or work with someone to do it for you) posts that pertain to your business, with your site information at the bottom, and send them to post directories, you will get more traffic and links.

 Ask for links from other related sites' webmasters. This is a rather "old-school" method however is still efficient, albeit lengthy and frustrating. Discover sites that relate to your market and write to their webmasters requesting that they connect back to you. Some will not address you. Some will say "no". Some will ask you to link to them. And others will simply link to you.

 You have higher chances of getting the outcomes you desire with this if your website includes important details. While your supreme goal is to have high-rank websites linking to yours, you can start with any rank (as long as the content is valuable and pertinent to what you have to offer). As you generate more links, your rank will increase too and you will be able to draw in the higher ranking sites.

 Hopefully these 5 Google ranking pointers will help you accomplish the ranking and traffic you're going for.

Best Website Designing Company in Mumbai

 A lot of Google ranking pointers deal with getting incoming links (or backlinks as they are also referred to) to your website. The more quality incoming links (figured out by the rank of the website that the link originates from and the relevance of the keyword) you have, the greater your Google Page Rank will be and the more visible you will be to your customers and/or prospects. When you participate in online forums and include the link to your website in your signature, you will get links back to your website. You can likewise submit your ezine to an ezine directory which will connect back to your site and give you more complimentary inbound links.

 As you bring in more links, your rank will go up as well and you will be able to bring in the greater ranking sites.

Best Website Desinging Companies in India are as follows:-

Call them for Best offers India and International.

Read More

http://troikatech.co/

http://brandlocking.in/

http://leadscart.in/

http://godwinpintoandcompany.com/

http://webdesignmumbai.review/

http://webdevelopmentmumbai.trade/

http://wordpresswebsites.co.in

http://seoservicesindia.net.in/

http://priusmedia.in

http://godwinpintoandcompany.com/

http://clearperceptionscounselling.com/

http://gmatcoachingclasses.online/

http://troikatechbusinesses.com/

http://troikaconsultants.com/

http://webdesignmumbai.trade/

http://webdesignmumbai.trade/

http://troikatechservices.in/

http://brandlocking.com/

http://kubber.in/

http://silveroakvilla.com/

http://igcsecoachingclasses.online/

http://priusmedia.in/

http://troikatechbusinesses.com/

Read More

Contact Details

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station, 

Opp. TMT Bus Stop, 

Thane – 401107.

Troika Tech Services


WordPress Development Company in Mumbai


Monday, 31 July 2017

Best Food Website Design

Best Food Website Design

Food webs are limited representations of real ecosystems as they necessarily aggregate many species into trophic species, which are functional groups of species that have the same predators and prey in a food web. Ecologists use these simplifications in quantitative (or mathematical) models of trophic or consumer-resource systems dynamics. Using these models they can measure and test for generalized patterns in the structure of real food web networks. Ecologists have identified non-random properties in the topographic structure of food webs. Published examples that are used in meta analysis are of variable quality with omissions. However, the number of empirical studies on community webs is on the rise and the mathematical treatment of food webs using network theory had identified patterns that are common to all. Scaling laws, for example, predict a relationship between the topology of food web predator-prey linkages and levels of species richness.

food web (or food cycle) is a natural interconnection of food chains and a graphical representation (usually an image) of what-eats-what in an ecological community. Another name for food web is consumer-resource system. Ecologists can broadly lump all life forms into one of two categories called trophic levels: 1) the autotrophs, and 2) the heterotrophs. To maintain their bodies, grow, develop, and to reproduce, autotrophs produce organic matter from inorganic substances, including both minerals and gases such as carbon dioxide. These chemical reactions require energy, which mainly comes from the Sun and largely by photosynthesis, although a very small amount comes from hydrothermal vents and hot springs. A gradient exists between trophic levels running from complete autotrophs that obtain their sole source of carbon from the atmosphere, to mixotrophs (such as carnivorous plants) that are autotrophic organisms that partially obtain organic matter from sources other than the atmosphere, and complete heterotrophs that must feed to obtain organic matter. The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that links an ecosystem into a unified system of exchange. There are different kinds of feeding relations that can be roughly divided into herbivory, carnivory, scavenging and parasitism. Some of the organic matter eaten by heterotrophs, such as sugars, provides energy. Autotrophs and heterotrophs come in all sizes, from microscopic to many tonnes - from cyanobacteria to giant redwoods, and from viruses and bdellovibrio to blue whales.

Charles Elton pioneered the concept of food cycles, food chains, and food size in his classical 1927 book "Animal Ecology"; Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text. Elton organized species into functional groups, which was the basis for Raymond Lindeman's classic and landmark paper in 1942 on trophic dynamics. Lindeman emphasized the important role of decomposer organisms in a trophic system of classification. The notion of a food web has a historical foothold in the writings of Charles Darwin and his terminology, including an "entangled bank", "web of life", "web of complex relations", and in reference to the decomposition actions of earthworms he talked about "the continued movement of the particles of earth". Even earlier, in 1768 John Bruckner described nature as "one continued web of life".

A simplified food web illustrating a three trophic food chain (producers-herbivores-carnivores) linked to decomposers. The movement of mineral nutrients is cyclic, whereas the movement of energy is unidirectional and noncyclic. Trophic species are encircled as nodes and arrows depict the links.[1][2] Food webs are the road-maps through Darwin's famous 'entangled bank' and have a long history in ecology. Like maps of unfamiliar ground, food webs appear bewilderingly complex. They were often published to make just that point. Yet recent studies have shown that food webs from a wide range of terrestrial, freshwater, and marine communities share a remarkable list of patterns.[3]:669

Links in food webs map the feeding connections (who eats whom) in an ecological community. Food cycle is an obsolete term that is synonymous with food web. Ecologists can broadly group all life forms into one of two trophic layers, the autotrophs and the heterotrophs. Autotrophs produce more biomass energy, either chemically without the sun's energy or by capturing the sun's energy in photosynthesis, than they use during metabolic respiration. Heterotrophs consume rather than produce biomass energy as they metabolize, grow, and add to levels of secondary production. A food web depicts a collection of polyphagous heterotrophic consumers that network and cycle the flow of energy and nutrients from a productive base of self-feeding autotrophs.[3][4][5]

The base or basal species in a food web are those species without prey and can include autotrophs or saprophytic detritivores (i.e., the community of decomposers in soil, biofilms, and periphyton). Feeding connections in the web are called trophic links. The number of trophic links per consumer is a measure of food web connectance. Food chains are nested within the trophic links of food webs. Food chains are linear (noncyclic) feeding pathways that trace monophagous consumers from a base species up to the top consumer, which is usually a larger predatory carnivore.[6][7][8]

Linkages connect to nodes in a food web, which are aggregates of biological taxa called trophic species. Trophic species are functional groups that have the same predators and prey in a food web. Common examples of an aggregated node in a food web might include parasites, microbes, decomposers, saprotrophs, consumers, or predators, each containing many species in a web that can otherwise be connected to other trophic species.[9][10]

A trophic pyramid (a) and a simplified community food web (b) illustrating ecological relations among creatures that are typical of a northern Boreal terrestrial ecosystem. The trophic pyramid roughly represents the biomass (usually measured as total dry-weight) at each level. Plants generally have the greatest biomass. Names of trophic categories are shown to the right of the pyramid. Some ecosystems, such as many wetlands, do not organize as a strict pyramid, because aquatic plants are not as productive as long-lived terrestrial plants such as trees. Ecological trophic pyramids are typically one of three kinds: 1) pyramid of numbers, 2) pyramid of biomass, or 3) pyramid of energy.[4]

Food webs have trophic levels and positions. Basal species, such as plants, form the first level and are the resource limited species that feed on no other living creature in the web. Basal species can be autotrophs or detritivores, including "decomposing organic material and its associated microorganisms which we defined as detritus, micro-inorganic material and associated microorganisms (MIP), and vascular plant material."[11]:94 Most autotrophs capture the sun's energy in chlorophyll, but some autotrophs (the chemolithotrophs) obtain energy by the chemical oxidation of inorganic compounds and can grow in dark environments, such as the sulfur bacterium Thiobacillus, which lives in hot sulfur springs. The top level has top (or apex) predators which no other species kills directly for its food resource needs. The intermediate levels are filled with omnivores that feed on more than one trophic level and cause energy to flow through a number of food pathways starting from a basal species.[12]

In the simplest scheme, the first trophic level (level 1) is plants, then herbivores (level 2), and then carnivores (level 3). The trophic level is equal to one more than the chain length, which is the number of links connecting to the base. The base of the food chain (primary producers or detritivores) is set at zero.[3][13] Ecologists identify feeding relations and organize species into trophic species through extensive gut content analysis of different species. The technique has been improved through the use of stable isotopes to better trace energy flow through the web.[14] It was once thought that omnivory was rare, but recent evidence suggests otherwise. This realization has made trophic classifications more complex.[15]

The trophic level concept was introduced in a historical landmark paper on trophic dynamics in 1942 by Raymond L. Lindeman. The basis of trophic dynamics is the transfer of energy from one part of the ecosystem to another.[13][16] The trophic dynamic concept has served as a useful quantitative heuristic, but it has several major limitations including the precision by which an organism can be allocated to a specific trophic level. Omnivores, for example, are not restricted to any single level. Nonetheless, recent research has found that discrete trophic levels do exist, but "above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores."[15]

A central question in the trophic dynamic literature is the nature of control and regulation over resources and production. Ecologists use simplified one trophic position food chain models (producer, carnivore, decomposer). Using these models, ecologists have tested various types of ecological control mechanisms. For example, herbivores generally have an abundance of vegetative resources, which meant that their populations were largely controlled or regulated by predators. This is known as the top-down hypothesis or 'green-world' hypothesis. Alternatively to the top-down hypothesis, not all plant material is edible and the nutritional quality or antiherbivore defenses of plants (structural and chemical) suggests a bottom-up form of regulation or control.[17][18][19] Recent studies have concluded that both "top-down" and "bottom-up" forces can influence community structure and the strength of the influence is environmentally context dependent.[20][21] These complex multitrophic interactions involve more than two trophic levels in a food web.[22]

Another example of a multi-trophic interaction is a trophic cascade, in which predators help to increase plant growth and prevent overgrazing by suppressing herbivores. Links in a food-web illustrate direct trophic relations among species, but there are also indirect effects that can alter the abundance, distribution, or biomass in the trophic levels. For example, predators eating herbivores indirectly influence the control and regulation of primary production in plants. Although the predators do not eat the plants directly, they regulate the population of herbivores that are directly linked to plant trophism. The net effect of direct and indirect relations is called trophic cascades. Trophic cascades are separated into species-level cascades, where only a subset of the food-web dynamic is impacted by a change in population numbers, and community-level cascades, where a change in population numbers has a dramatic effect on the entire food-web, such as the distribution of plant biomass.[23]

Main article: Energy flow (ecology) See also: Ecological efficiency The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. In other words, the mass of any one element at the beginning of a reaction will equal the mass of that element at the end of the reaction.[24]:11

Left: Energy flow diagram of a frog. The frog represents a node in an extended food web. The energy ingested is utilized for metabolic processes and transformed into biomass. The energy flow continues on its path if the frog is ingested by predators, parasites, or as a decaying carcass in soil. This energy flow diagram illustrates how energy is lost as it fuels the metabolic process that transform the energy and nutrients into biomass.
Right: An expanded three link energy food chain (1. plants, 2. herbivores, 3. carnivores) illustrating the relationship between food flow diagrams and energy transformity. The transformity of energy becomes degraded, dispersed, and diminished from higher quality to lesser quantity as the energy within a food chain flows from one trophic species into another. Abbreviations: I=input, A=assimilation, R=respiration, NU=not utilized, P=production, B=biomass.[25]

Food webs depict energy flow via trophic linkages. Energy flow is directional, which contrasts against the cyclic flows of material through the food web systems.[26] Energy flow "typically includes production, consumption, assimilation, non-assimilation losses (feces), and respiration (maintenance costs)."[5]:5 In a very general sense, energy flow (E) can be defined as the sum of metabolic production (P) and respiration (R), such that E=P+R.

Biomass represents stored energy. However, concentration and quality of nutrients and energy is variable. Many plant fibers, for example, are indigestible to many herbivores leaving grazer community food webs more nutrient limited than detrital food webs where bacteria are able to access and release the nutrient and energy stores.[27][28] "Organisms usually extract energy in the form of carbohydrates, lipids, and proteins. These polymers have a dual role as supplies of energy as well as building blocks; the part that functions as energy supply results in the production of nutrients (and carbon dioxide, water, and heat). Excretion of nutrients is, therefore, basic to metabolism."[28]:1230–1231 The units in energy flow webs are typically a measure mass or energy per m2 per unit time. Different consumers are going to have different metabolic assimilation efficiencies in their diets. Each trophic level transforms energy into biomass. Energy flow diagrams illustrate the rates and efficiency of transfer from one trophic level into another and up through the hierarchy.[29][30]

It is the case that the biomass of each trophic level decreases from the base of the chain to the top. This is because energy is lost to the environment with each transfer as entropy increases. About eighty to ninety percent of the energy is expended for the organism’s life processes or is lost as heat or waste. Only about ten to twenty percent of the organism’s energy is generally passed to the next organism.[31] The amount can be less than one percent in animals consuming less digestible plants, and it can be as high as forty percent in zooplankton consuming phytoplankton.[32] Graphic representations of the biomass or productivity at each tropic level are called ecological pyramids or trophic pyramids. The transfer of energy from primary producers to top consumers can also be characterized by energy flow diagrams.[33]

Main article: food chain

A common metric used to quantify food web trophic structure is food chain length. Food chain length is another way of describing food webs as a measure of the number of species encountered as energy or nutrients move from the plants to top predators.[34]:269 There are different ways of calculating food chain length depending on what parameters of the food web dynamic are being considered: connectance, energy, or interaction.[34] In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web. The mean chain length of an entire web is the arithmetic average of the lengths of all chains in a food web.[35][12]

In a simple predator-prey example, a deer is one step removed from the plants it eats (chain length = 1) and a wolf that eats the deer is two steps removed from the plants (chain length = 2). The relative amount or strength of influence that these parameters have on the food web address questions about:

See also: Ecological pyramid


Top Left: A four level trophic pyramid sitting on a layer of soil and its community of decomposers. Top right: A three layer trophic pyramid linked to the biomass and energy flow concepts. Bottom: Illustration of a range of ecological pyramids, including top pyramid of numbers, middle pyramid of biomass, and bottom pyramid of energy. The terrestrial forest (summer) and the English Channel ecosystems exhibit inverted pyramids.Note: trophic levels are not drawn to scale and the pyramid of numbers excludes microorganisms and soil animals. Abbreviations: P=Producers, C1=Primary consumers, C2=Secondary consumers, C3=Tertiary consumers, S=Saprotrophs.[4]

In a pyramid of numbers, the number of consumers at each level decreases significantly, so that a single top consumer, (e.g., a polar bear or a human), will be supported by a much larger number of separate producers. There is usually a maximum of four or five links in a food chain, although food chains in aquatic ecosystems are more often longer than those on land. Eventually, all the energy in a food chain is dispersed as heat.[4]

Ecological pyramids place the primary producers at the base. They can depict different numerical properties of ecosystems, including numbers of individuals per unit of area, biomass (g/m2), and energy (k cal m−2 yr−1). The emergent pyramidal arrangement of trophic levels with amounts of energy transfer decreasing as species become further removed from the source of production is one of several patterns that is repeated amongst the planets ecosystems.[2]\[3][38] The size of each level in the pyramid generally represents biomass, which can be measured as the dry weight of an organism.[39] Autotrophs may have the highest global proportion of biomass, but they are closely rivaled or surpassed by microbes.[40][41]

Pyramid structure can vary across ecosystems and across time. In some instances biomass pyramids can be inverted. This pattern is often identified in aquatic and coral reef ecosystems. The pattern of biomass inversion is attributed to different sizes of producers. Aquatic communities are often dominated by producers that are smaller than the consumers that have high growth rates. Aquatic producers, such as planktonic algae or aquatic plants, lack the large accumulation of secondary growth as exists in the woody trees of terrestrial ecosystems. However, they are able to reproduce quickly enough to support a larger biomass of grazers. This inverts the pyramid. Primary consumers have longer lifespans and slower growth rates that accumulates more biomass than the producers they consume. Phytoplankton live just a few days, whereas the zooplankton eating the phytoplankton live for several weeks and the fish eating the zooplankton live for several consecutive years.[42] Aquatic predators also tend to have a lower death rate than the smaller consumers, which contributes to the inverted pyramidal pattern. Population structure, migration rates, and environmental refuge for prey are other possible causes for pyramids with biomass inverted. Energy pyramids, however, will always have an upright pyramid shape if all sources of food energy are included and this is dictated by the second law of thermodynamics.[4][43]

Main article: Nutrient cycle

Many of the Earth's elements and minerals (or mineral nutrients) are contained within the tissues and diets of organisms. Hence, mineral and nutrient cycles trace food web energy pathways. Ecologists employ stoichiometry to analyze the ratios of the main elements found in all organisms: carbon (C), nitrogen (N), phosphorus (P). There is a large transitional difference between many terrestrial and aquatic systems as C:P and C:N ratios are much higher in terrestrial systems while N:P ratios are equal between the two systems.[44][45][46]Mineral nutrients are the material resources that organisms need for growth, development, and vitality. Food webs depict the pathways of mineral nutrient cycling as they flow through organisms.[4][16] Most of the primary production in an ecosystem is not consumed, but is recycled by detritus back into useful nutrients.[47] Many of the Earth's microorganisms are involved in the formation of minerals in a process called biomineralization.[48][49][50] Bacteria that live in detrital sediments create and cycle nutrients and biominerals.[51] Food web models and nutrient cycles have traditionally been treated separately, but there is a strong functional connection between the two in terms of stability, flux, sources, sinks, and recycling of mineral nutrients.[52][53]

Food webs are necessarily aggregated and only illustrate a tiny portion of the complexity of real ecosystems. For example, the number of species on the planet are likely in the general order of 107, over 95% of these species consist of microbes and invertebrates, and relatively few have been named or classified by taxonomists.[54][55][56] It is explicitly understood that natural systems are 'sloppy' and that food web trophic positions simplify the complexity of real systems that sometimes overemphasize many rare interactions. Most studies focus on the larger influences where the bulk of energy transfer occurs.[17] "These omissions and problems are causes for concern, but on present evidence do not present insurmountable difficulties."[3]:669

Paleoecological studies can reconstruct fossil food-webs and trophic levels. Primary producers form the base (red spheres), predators at top (yellow spheres), the lines represent feeding links. Original food-webs (left) are simplified (right) by aggregating groups feeding on common prey into coarser grained trophic species.[57]

There are different kinds or categories of food webs:

Within these categories, food webs can be further organized according to the different kinds of ecosystems being investigated. For example, human food webs, agricultural food webs, detrital food webs, marine food webs, aquatic food webs, soil food webs, Arctic (or polar) food webs, terrestrial food webs, and microbial food webs. These characterizations stem from the ecosystem concept, which assumes that the phenomena under investigation (interactions and feedback loops) are sufficient to explain patterns within boundaries, such as the edge of a forest, an island, a shoreline, or some other pronounced physical characteristic.[59][60][61]

In a detrital web, plant and animal matter is broken down by decomposers, e.g., bacteria and fungi, and moves to detritivores and then carnivores.[62] There are often relationships between the detrital web and the grazing web. Mushrooms produced by decomposers in the detrital web become a food source for deer, squirrels, and mice in the grazing web. Earthworms eaten by robins are detritivores consuming decaying leaves.[63]

An illustration of a soil food web.

"Detritus can be broadly defined as any form of non-living organic matter, including different types of plant tissue (e.g. leaf litter, dead wood, aquatic macrophytes, algae), animal tissue (carrion), dead microbes, faeces (manure, dung, faecal pellets, guano, frass), as well as products secreted, excreted or exuded from organisms (e.g. extra-cellular polymers, nectar, root exudates and leachates, dissolved organic matter, extra-cellular matrix, mucilage). The relative importance of these forms of detritus, in terms of origin, size and chemical composition, varies across ecosystems."[47]:585

Ecologists collect data on trophic levels and food webs to statistically model and mathematically calculate parameters, such as those used in other kinds of network analysis (e.g., graph theory), to study emergent patterns and properties shared among ecosystems. There are different ecological dimensions that can be mapped to create more complicated food webs, including: species composition (type of species), richness (number of species), biomass (the dry weight of plants and animals), productivity (rates of conversion of energy and nutrients into growth), and stability (food webs over time). A food web diagram illustrating species composition shows how change in a single species can directly and indirectly influence many others. Microcosm studies are used to simplify food web research into semi-isolated units such as small springs, decaying logs, and laboratory experiments using organisms that reproduce quickly, such as daphnia feeding on algae grown under controlled environments in jars of water.[36][64]

While the complexity of real food webs connections are difficult to decipher, ecologists have found mathematical models on networks an invaluable tool for gaining insight into the structure, stability, and laws of food web behaviours relative to observable outcomes. "Food web theory centers around the idea of connectance."[65]:1648 Quantitative formulas simplify the complexity of food web structure. The number of trophic links (tL), for example, is converted into a connectance value:

C=tLS(S−1)/2{\displaystyle C={\cfrac {t_{L}}{S(S-1)/2}}},

where, S(S-1)/2 is the maximum number of binary connections among S species.[65] "Connectance (C) is the fraction of all possible links that are realized (L/S2) and represents a standard measure of food web complexity..."[66]:12913 The distance (d) between every species pair in a web is averaged to compute the mean distance between all nodes in a web (D)[66] and multiplied by the total number of links (L) to obtain link-density (LD), which is influenced by scale dependent variables such as species richness. These formulas are the basis for comparing and investigating the nature of non-random patterns in the structure of food web networks among many different types of ecosystems.[66][67]

Scaling laws, complexity, choas, and patterned correlates are common features attributed to food web structure.[68][69]

Food webs are complex. Complexity is a measure of an increasing number of permutations and it is also a metaphorical term that conveys the mental intractability or limits concerning unlimited algorithmic possibilities. In food web terminology, complexity is a product of the number of species and connectance.[70][71][72] Connectance is "the fraction of all possible links that are realized in a network".[73]:12917 These concepts were derived and stimulated through the suggestion that complexity leads to stability in food webs, such as increasing the number of trophic levels in more species rich ecosystems. This hypothesis was challenged through mathematical models suggesting otherwise, but subsequent studies have shown that the premise holds in real systems.[70][74]

At different levels in the hierarchy of life, such as the stability of a food web, "the same overall structure is maintained in spite of an ongoing flow and change of components."[75]:476 The farther a living system (e.g., ecosystem) sways from equilibrium, the greater its complexity.[75] Complexity has multiple meanings in the life sciences and in the public sphere that confuse its application as a precise term for analytical purposes in science.[72][76] Complexity in the life sciences (or biocomplexity) is defined by the "properties emerging from the interplay of behavioral, biological, physical, and social interactions that affect, sustain, or are modified by living organisms, including humans".[77]:1018

Several concepts have emerged from the study of complexity in food webs. Complexity explains many principals pertaining to self-organization, non-linearity, interaction, cybernetic feedback, discontinuity, emergence, and stability in food webs. Nestedness, for example, is defined as "a pattern of interaction in which specialists interact with species that form perfect subsets of the species with which generalists interact",[78]:575 "—that is, the diet of the most specialized species is a subset of the diet of the next more generalized species, and its diet a subset of the next more generalized, and so on."[79] Until recently, it was thought that food webs had little nested structure, but empirical evidence shows that many published webs have nested subwebs in their assembly.[80]

Food webs are complex networks. As networks, they exhibit similar structural properties and mathematical laws that have been used to describe other complex systems, such as small world and scale free properties. The small world attribute refers to the many loosely connected nodes, non-random dense clustering of a few nodes (i.e., trophic or keystone species in ecology), and small path length compared to a regular lattice.[73][81] "Ecological networks, especially mutualistic networks, are generally very heterogeneous, consisting of areas with sparse links among species and distinct areas of tightly linked species. These regions of high link density are often referred to as cliques, hubs, compartments, cohesive sub-groups, or modules...Within food webs, especially in aquatic systems, nestedness appears to be related to body size because the diets of smaller predators tend to be nested subsets of those of larger predators (Woodward & Warren 2007; YvonDurocher et al. 2008), and phylogenetic constraints, whereby related taxa are nested based on their common evolutionary history, are also evident (Cattin et al. 2004)."[82]:257 "Compartments in food webs are subgroups of taxa in which many strong interactions occur within the subgroups and few weak interactions occur between the subgroups. Theoretically, compartments increase the stability in networks, such as food webs."[58]

Food webs are also complex in the way that they change in scale, seasonally, and geographically. The components of food webs, including organisms and mineral nutrients, cross the thresholds of ecosystem boundaries. This has led to the concept or area of study known as cross-boundary subsidy.[59][60] "This leads to anomalies, such as food web calculations determining that an ecosystem can support one half of a top carnivore, without specifying which end."[61] Nonetheless, real differences in structure and function have been identified when comparing different kinds of ecological food webs, such as terrestrial vs. aquatic food webs.[83]

Victor Summerhayes and Charles Elton's 1923 food web of Bear Island (Arrows point to an organism being consumed by another organism).

Food webs serve as a framework to help ecologists organize the complex network of interactions among species observed in nature and around the world. One of the earliest descriptions of a food chain was described by a medieval Afro-Arab scholar named Al-Jahiz: "All animals, in short, cannot exist without food, neither can the hunting animal escape being hunted in his turn."[84]:143 The earliest graphical depiction of a food web was by Lorenzo Camerano in 1880, followed independently by those of Pierce and colleagues in 1912 and Victor Shelford in 1913.[85][86] Two food webs about herring were produced by Victor Summerhayes and Charles Elton[87] and Alister Hardy[88] in 1923 and 1924. Charles Elton subsequently pioneered the concept of food cycles, food chains, and food size in his classical 1927 book "Animal Ecology"; Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text.[89] After Charles Elton's use of food webs in his 1927 synthesis,[90] they became a central concept in the field of ecology. Elton[89] organized species into functional groups, which formed the basis for the trophic system of classification in Raymond Lindeman's classic and landmark paper in 1942 on trophic dynamics.[16][37][91] The notion of a food web has a historical foothold in the writings of Charles Darwin and his terminology, including an "entangled bank", "web of life", "web of complex relations", and in reference to the decomposition actions of earthworms he talked about "the continued movement of the particles of earth". Even earlier, in 1768 John Bruckner described nature as "one continued web of life".[3][92][93][94]

Interest in food webs increased after Robert Paine's experimental and descriptive study of intertidal shores[95] suggesting that food web complexity was key to maintaining species diversity and ecological stability. Many theoretical ecologists, including Sir Robert May[96] and Stuart Pimm,[97] were prompted by this discovery and others to examine the mathematical properties of food webs.

The 18th annual Webby Awards for 2014 was held at Cipriani Wall Street in New York City on May 19, 2014, which was hosted by comedian and actor Patton Oswalt.[1] The awards ceremony was streamed live at the Webby Awards website.

Lifetime Achievement was awarded to Lawrence Lessig for his work with intellectual property be co-founding Creative Commons and the person of the year was the artist Banksy.[2]

(from http://winners.webbyawards.com/2014)

Winners and nominees are generally named according to the organization or website winning the award, although the recipient is, technically, the web design firm or internal department that created the winning site and in the case of corporate websites, the designer's client. Web links are provided for informational purposes, both in the most recently available archive.org version before the awards ceremony and, where available, the current website. Many older websites no longer exist, are redirected, or have been substantially redesigned.

If you’ve already invested in a bunch of code in another framework, or if you have specific requirements that would be better served by Angular or React or something else, Predix UI is still here to help you. Jump over to our documentation site and start using the Predix UI components to speed up your work.

More reading:

Mess with demos and read more about Predix UI on our websiteRead Rob Dodson’s “The Case For Custom Elements: Part 1” and “Part 2” for some great technical and architecture info on custom elements, one half of the web component standardsRead about px-vis, Predix UI’s charting framework designed to visualize millions of streaming data points for industrial internet application

Best Website Desinging Companies in India are as follows:-


  •      1.       http://troikatech.co/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/

    Call them for Best offers India and International.

Read More

Contact Details

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station, 

Opp. TMT Bus Stop, 

Thane – 401107

NGO Website Designing 


Troika Tech Services


WordPress Development Company in Mumbai


Top Food Website Design

Top Food Website Design

A freshwater aquatic and terrestrial food web

A food web (or food cycle) is a natural interconnection of food chains and a graphical representation (usually an image) of what-eats-what in an ecological community. Another name for food web is consumer-resource system. Ecologists can broadly lump all life forms into one of two categories called trophic levels: 1) the autotrophs, and 2) the heterotrophs. To maintain their bodies, grow, develop, and to reproduce, autotrophs produce organic matter from inorganic substances, including both minerals and gases such as carbon dioxide. These chemical reactions require energy, which mainly comes from the Sun and largely by photosynthesis, although a very small amount comes from hydrothermal vents and hot springs. A gradient exists between trophic levels running from complete autotrophs that obtain their sole source of carbon from the atmosphere, to mixotrophs (such as carnivorous plants) that are autotrophic organisms that partially obtain organic matter from sources other than the atmosphere, and complete heterotrophs that must feed to obtain organic matter. The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that links an ecosystem into a unified system of exchange. There are different kinds of feeding relations that can be roughly divided into herbivory, carnivory, scavenging and parasitism. Some of the organic matter eaten by heterotrophs, such as sugars, provides energy. Autotrophs and heterotrophs come in all sizes, from microscopic to many tonnes - from cyanobacteria to giant redwoods, and from viruses and bdellovibrio to blue whales.

Charles Elton pioneered the concept of food cycles, food chains, and food size in his classical 1927 book "Animal Ecology"; Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text. Elton organized species into functional groups, which was the basis for Raymond Lindeman's classic and landmark paper in 1942 on trophic dynamics. Lindeman emphasized the important role of decomposer organisms in a trophic system of classification. The notion of a food web has a historical foothold in the writings of Charles Darwin and his terminology, including an "entangled bank", "web of life", "web of complex relations", and in reference to the decomposition actions of earthworms he talked about "the continued movement of the particles of earth". Even earlier, in 1768 John Bruckner described nature as "one continued web of life".

Food webs are limited representations of real ecosystems as they necessarily aggregate many species into trophic species, which are functional groups of species that have the same predators and prey in a food web. Ecologists use these simplifications in quantitative (or mathematical) models of trophic or consumer-resource systems dynamics. Using these models they can measure and test for generalized patterns in the structure of real food web networks. Ecologists have identified non-random properties in the topographic structure of food webs. Published examples that are used in meta analysis are of variable quality with omissions. However, the number of empirical studies on community webs is on the rise and the mathematical treatment of food webs using network theory had identified patterns that are common to all. Scaling laws, for example, predict a relationship between the topology of food web predator-prey linkages and levels of species richness.

A simplified food web illustrating a three trophic food chain (producers-herbivores-carnivores) linked to decomposers. The movement of mineral nutrients is cyclic, whereas the movement of energy is unidirectional and noncyclic. Trophic species are encircled as nodes and arrows depict the links.[1][2] Food webs are the road-maps through Darwin's famous 'entangled bank' and have a long history in ecology. Like maps of unfamiliar ground, food webs appear bewilderingly complex. They were often published to make just that point. Yet recent studies have shown that food webs from a wide range of terrestrial, freshwater, and marine communities share a remarkable list of patterns.[3]:669

Links in food webs map the feeding connections (who eats whom) in an ecological community. Food cycle is an obsolete term that is synonymous with food web. Ecologists can broadly group all life forms into one of two trophic layers, the autotrophs and the heterotrophs. Autotrophs produce more biomass energy, either chemically without the sun's energy or by capturing the sun's energy in photosynthesis, than they use during metabolic respiration. Heterotrophs consume rather than produce biomass energy as they metabolize, grow, and add to levels of secondary production. A food web depicts a collection of polyphagous heterotrophic consumers that network and cycle the flow of energy and nutrients from a productive base of self-feeding autotrophs.[3][4][5]

The base or basal species in a food web are those species without prey and can include autotrophs or saprophytic detritivores (i.e., the community of decomposers in soil, biofilms, and periphyton). Feeding connections in the web are called trophic links. The number of trophic links per consumer is a measure of food web connectance. Food chains are nested within the trophic links of food webs. Food chains are linear (noncyclic) feeding pathways that trace monophagous consumers from a base species up to the top consumer, which is usually a larger predatory carnivore.[6][7][8]

Linkages connect to nodes in a food web, which are aggregates of biological taxa called trophic species. Trophic species are functional groups that have the same predators and prey in a food web. Common examples of an aggregated node in a food web might include parasites, microbes, decomposers, saprotrophs, consumers, or predators, each containing many species in a web that can otherwise be connected to other trophic species.[9][10]

A trophic pyramid (a) and a simplified community food web (b) illustrating ecological relations among creatures that are typical of a northern Boreal terrestrial ecosystem. The trophic pyramid roughly represents the biomass (usually measured as total dry-weight) at each level. Plants generally have the greatest biomass. Names of trophic categories are shown to the right of the pyramid. Some ecosystems, such as many wetlands, do not organize as a strict pyramid, because aquatic plants are not as productive as long-lived terrestrial plants such as trees. Ecological trophic pyramids are typically one of three kinds: 1) pyramid of numbers, 2) pyramid of biomass, or 3) pyramid of energy.[4]

Food webs have trophic levels and positions. Basal species, such as plants, form the first level and are the resource limited species that feed on no other living creature in the web. Basal species can be autotrophs or detritivores, including "decomposing organic material and its associated microorganisms which we defined as detritus, micro-inorganic material and associated microorganisms (MIP), and vascular plant material."[11]:94 Most autotrophs capture the sun's energy in chlorophyll, but some autotrophs (the chemolithotrophs) obtain energy by the chemical oxidation of inorganic compounds and can grow in dark environments, such as the sulfur bacterium Thiobacillus, which lives in hot sulfur springs. The top level has top (or apex) predators which no other species kills directly for its food resource needs. The intermediate levels are filled with omnivores that feed on more than one trophic level and cause energy to flow through a number of food pathways starting from a basal species.[12]

In the simplest scheme, the first trophic level (level 1) is plants, then herbivores (level 2), and then carnivores (level 3). The trophic level is equal to one more than the chain length, which is the number of links connecting to the base. The base of the food chain (primary producers or detritivores) is set at zero.[3][13] Ecologists identify feeding relations and organize species into trophic species through extensive gut content analysis of different species. The technique has been improved through the use of stable isotopes to better trace energy flow through the web.[14] It was once thought that omnivory was rare, but recent evidence suggests otherwise. This realization has made trophic classifications more complex.[15]

The trophic level concept was introduced in a historical landmark paper on trophic dynamics in 1942 by Raymond L. Lindeman. The basis of trophic dynamics is the transfer of energy from one part of the ecosystem to another.[13][16] The trophic dynamic concept has served as a useful quantitative heuristic, but it has several major limitations including the precision by which an organism can be allocated to a specific trophic level. Omnivores, for example, are not restricted to any single level. Nonetheless, recent research has found that discrete trophic levels do exist, but "above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores."[15]

A central question in the trophic dynamic literature is the nature of control and regulation over resources and production. Ecologists use simplified one trophic position food chain models (producer, carnivore, decomposer). Using these models, ecologists have tested various types of ecological control mechanisms. For example, herbivores generally have an abundance of vegetative resources, which meant that their populations were largely controlled or regulated by predators. This is known as the top-down hypothesis or 'green-world' hypothesis. Alternatively to the top-down hypothesis, not all plant material is edible and the nutritional quality or antiherbivore defenses of plants (structural and chemical) suggests a bottom-up form of regulation or control.[17][18][19] Recent studies have concluded that both "top-down" and "bottom-up" forces can influence community structure and the strength of the influence is environmentally context dependent.[20][21] These complex multitrophic interactions involve more than two trophic levels in a food web.[22]

Another example of a multi-trophic interaction is a trophic cascade, in which predators help to increase plant growth and prevent overgrazing by suppressing herbivores. Links in a food-web illustrate direct trophic relations among species, but there are also indirect effects that can alter the abundance, distribution, or biomass in the trophic levels. For example, predators eating herbivores indirectly influence the control and regulation of primary production in plants. Although the predators do not eat the plants directly, they regulate the population of herbivores that are directly linked to plant trophism. The net effect of direct and indirect relations is called trophic cascades. Trophic cascades are separated into species-level cascades, where only a subset of the food-web dynamic is impacted by a change in population numbers, and community-level cascades, where a change in population numbers has a dramatic effect on the entire food-web, such as the distribution of plant biomass.[23]

Main article: Energy flow (ecology) See also: Ecological efficiency The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. In other words, the mass of any one element at the beginning of a reaction will equal the mass of that element at the end of the reaction.[24]:11

Left: Energy flow diagram of a frog. The frog represents a node in an extended food web. The energy ingested is utilized for metabolic processes and transformed into biomass. The energy flow continues on its path if the frog is ingested by predators, parasites, or as a decaying carcass in soil. This energy flow diagram illustrates how energy is lost as it fuels the metabolic process that transform the energy and nutrients into biomass.
Right: An expanded three link energy food chain (1. plants, 2. herbivores, 3. carnivores) illustrating the relationship between food flow diagrams and energy transformity. The transformity of energy becomes degraded, dispersed, and diminished from higher quality to lesser quantity as the energy within a food chain flows from one trophic species into another. Abbreviations: I=input, A=assimilation, R=respiration, NU=not utilized, P=production, B=biomass.[25]

Food webs depict energy flow via trophic linkages. Energy flow is directional, which contrasts against the cyclic flows of material through the food web systems.[26] Energy flow "typically includes production, consumption, assimilation, non-assimilation losses (feces), and respiration (maintenance costs)."[5]:5 In a very general sense, energy flow (E) can be defined as the sum of metabolic production (P) and respiration (R), such that E=P+R.

Biomass represents stored energy. However, concentration and quality of nutrients and energy is variable. Many plant fibers, for example, are indigestible to many herbivores leaving grazer community food webs more nutrient limited than detrital food webs where bacteria are able to access and release the nutrient and energy stores.[27][28] "Organisms usually extract energy in the form of carbohydrates, lipids, and proteins. These polymers have a dual role as supplies of energy as well as building blocks; the part that functions as energy supply results in the production of nutrients (and carbon dioxide, water, and heat). Excretion of nutrients is, therefore, basic to metabolism."[28]:1230–1231 The units in energy flow webs are typically a measure mass or energy per m2 per unit time. Different consumers are going to have different metabolic assimilation efficiencies in their diets. Each trophic level transforms energy into biomass. Energy flow diagrams illustrate the rates and efficiency of transfer from one trophic level into another and up through the hierarchy.[29][30]

It is the case that the biomass of each trophic level decreases from the base of the chain to the top. This is because energy is lost to the environment with each transfer as entropy increases. About eighty to ninety percent of the energy is expended for the organism’s life processes or is lost as heat or waste. Only about ten to twenty percent of the organism’s energy is generally passed to the next organism.[31] The amount can be less than one percent in animals consuming less digestible plants, and it can be as high as forty percent in zooplankton consuming phytoplankton.[32] Graphic representations of the biomass or productivity at each tropic level are called ecological pyramids or trophic pyramids. The transfer of energy from primary producers to top consumers can also be characterized by energy flow diagrams.[33]

Main article: food chain

A common metric used to quantify food web trophic structure is food chain length. Food chain length is another way of describing food webs as a measure of the number of species encountered as energy or nutrients move from the plants to top predators.[34]:269 There are different ways of calculating food chain length depending on what parameters of the food web dynamic are being considered: connectance, energy, or interaction.[34] In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web. The mean chain length of an entire web is the arithmetic average of the lengths of all chains in a food web.[35][12]

In a simple predator-prey example, a deer is one step removed from the plants it eats (chain length = 1) and a wolf that eats the deer is two steps removed from the plants (chain length = 2). The relative amount or strength of influence that these parameters have on the food web address questions about:

See also: Ecological pyramid


Top Left: A four level trophic pyramid sitting on a layer of soil and its community of decomposers. Top right: A three layer trophic pyramid linked to the biomass and energy flow concepts. Bottom: Illustration of a range of ecological pyramids, including top pyramid of numbers, middle pyramid of biomass, and bottom pyramid of energy. The terrestrial forest (summer) and the English Channel ecosystems exhibit inverted pyramids.Note: trophic levels are not drawn to scale and the pyramid of numbers excludes microorganisms and soil animals. Abbreviations: P=Producers, C1=Primary consumers, C2=Secondary consumers, C3=Tertiary consumers, S=Saprotrophs.[4]

In a pyramid of numbers, the number of consumers at each level decreases significantly, so that a single top consumer, (e.g., a polar bear or a human), will be supported by a much larger number of separate producers. There is usually a maximum of four or five links in a food chain, although food chains in aquatic ecosystems are more often longer than those on land. Eventually, all the energy in a food chain is dispersed as heat.[4]

Ecological pyramids place the primary producers at the base. They can depict different numerical properties of ecosystems, including numbers of individuals per unit of area, biomass (g/m2), and energy (k cal m−2 yr−1). The emergent pyramidal arrangement of trophic levels with amounts of energy transfer decreasing as species become further removed from the source of production is one of several patterns that is repeated amongst the planets ecosystems.[2]\[3][38] The size of each level in the pyramid generally represents biomass, which can be measured as the dry weight of an organism.[39] Autotrophs may have the highest global proportion of biomass, but they are closely rivaled or surpassed by microbes.[40][41]

Pyramid structure can vary across ecosystems and across time. In some instances biomass pyramids can be inverted. This pattern is often identified in aquatic and coral reef ecosystems. The pattern of biomass inversion is attributed to different sizes of producers. Aquatic communities are often dominated by producers that are smaller than the consumers that have high growth rates. Aquatic producers, such as planktonic algae or aquatic plants, lack the large accumulation of secondary growth as exists in the woody trees of terrestrial ecosystems. However, they are able to reproduce quickly enough to support a larger biomass of grazers. This inverts the pyramid. Primary consumers have longer lifespans and slower growth rates that accumulates more biomass than the producers they consume. Phytoplankton live just a few days, whereas the zooplankton eating the phytoplankton live for several weeks and the fish eating the zooplankton live for several consecutive years.[42] Aquatic predators also tend to have a lower death rate than the smaller consumers, which contributes to the inverted pyramidal pattern. Population structure, migration rates, and environmental refuge for prey are other possible causes for pyramids with biomass inverted. Energy pyramids, however, will always have an upright pyramid shape if all sources of food energy are included and this is dictated by the second law of thermodynamics.[4][43]

Main article: Nutrient cycle

Many of the Earth's elements and minerals (or mineral nutrients) are contained within the tissues and diets of organisms. Hence, mineral and nutrient cycles trace food web energy pathways. Ecologists employ stoichiometry to analyze the ratios of the main elements found in all organisms: carbon (C), nitrogen (N), phosphorus (P). There is a large transitional difference between many terrestrial and aquatic systems as C:P and C:N ratios are much higher in terrestrial systems while N:P ratios are equal between the two systems.[44][45][46]Mineral nutrients are the material resources that organisms need for growth, development, and vitality. Food webs depict the pathways of mineral nutrient cycling as they flow through organisms.[4][16] Most of the primary production in an ecosystem is not consumed, but is recycled by detritus back into useful nutrients.[47] Many of the Earth's microorganisms are involved in the formation of minerals in a process called biomineralization.[48][49][50] Bacteria that live in detrital sediments create and cycle nutrients and biominerals.[51] Food web models and nutrient cycles have traditionally been treated separately, but there is a strong functional connection between the two in terms of stability, flux, sources, sinks, and recycling of mineral nutrients.[52][53]

Food webs are necessarily aggregated and only illustrate a tiny portion of the complexity of real ecosystems. For example, the number of species on the planet are likely in the general order of 107, over 95% of these species consist of microbes and invertebrates, and relatively few have been named or classified by taxonomists.[54][55][56] It is explicitly understood that natural systems are 'sloppy' and that food web trophic positions simplify the complexity of real systems that sometimes overemphasize many rare interactions. Most studies focus on the larger influences where the bulk of energy transfer occurs.[17] "These omissions and problems are causes for concern, but on present evidence do not present insurmountable difficulties."[3]:669

Paleoecological studies can reconstruct fossil food-webs and trophic levels. Primary producers form the base (red spheres), predators at top (yellow spheres), the lines represent feeding links. Original food-webs (left) are simplified (right) by aggregating groups feeding on common prey into coarser grained trophic species.[57]

There are different kinds or categories of food webs:

Within these categories, food webs can be further organized according to the different kinds of ecosystems being investigated. For example, human food webs, agricultural food webs, detrital food webs, marine food webs, aquatic food webs, soil food webs, Arctic (or polar) food webs, terrestrial food webs, and microbial food webs. These characterizations stem from the ecosystem concept, which assumes that the phenomena under investigation (interactions and feedback loops) are sufficient to explain patterns within boundaries, such as the edge of a forest, an island, a shoreline, or some other pronounced physical characteristic.[59][60][61]

In a detrital web, plant and animal matter is broken down by decomposers, e.g., bacteria and fungi, and moves to detritivores and then carnivores.[62] There are often relationships between the detrital web and the grazing web. Mushrooms produced by decomposers in the detrital web become a food source for deer, squirrels, and mice in the grazing web. Earthworms eaten by robins are detritivores consuming decaying leaves.[63]

An illustration of a soil food web.

"Detritus can be broadly defined as any form of non-living organic matter, including different types of plant tissue (e.g. leaf litter, dead wood, aquatic macrophytes, algae), animal tissue (carrion), dead microbes, faeces (manure, dung, faecal pellets, guano, frass), as well as products secreted, excreted or exuded from organisms (e.g. extra-cellular polymers, nectar, root exudates and leachates, dissolved organic matter, extra-cellular matrix, mucilage). The relative importance of these forms of detritus, in terms of origin, size and chemical composition, varies across ecosystems."[47]:585

Ecologists collect data on trophic levels and food webs to statistically model and mathematically calculate parameters, such as those used in other kinds of network analysis (e.g., graph theory), to study emergent patterns and properties shared among ecosystems. There are different ecological dimensions that can be mapped to create more complicated food webs, including: species composition (type of species), richness (number of species), biomass (the dry weight of plants and animals), productivity (rates of conversion of energy and nutrients into growth), and stability (food webs over time). A food web diagram illustrating species composition shows how change in a single species can directly and indirectly influence many others. Microcosm studies are used to simplify food web research into semi-isolated units such as small springs, decaying logs, and laboratory experiments using organisms that reproduce quickly, such as daphnia feeding on algae grown under controlled environments in jars of water.[36][64]

While the complexity of real food webs connections are difficult to decipher, ecologists have found mathematical models on networks an invaluable tool for gaining insight into the structure, stability, and laws of food web behaviours relative to observable outcomes. "Food web theory centers around the idea of connectance."[65]:1648 Quantitative formulas simplify the complexity of food web structure. The number of trophic links (tL), for example, is converted into a connectance value:

C=tLS(S−1)/2{\displaystyle C={\cfrac {t_{L}}{S(S-1)/2}}},

where, S(S-1)/2 is the maximum number of binary connections among S species.[65] "Connectance (C) is the fraction of all possible links that are realized (L/S2) and represents a standard measure of food web complexity..."[66]:12913 The distance (d) between every species pair in a web is averaged to compute the mean distance between all nodes in a web (D)[66] and multiplied by the total number of links (L) to obtain link-density (LD), which is influenced by scale dependent variables such as species richness. These formulas are the basis for comparing and investigating the nature of non-random patterns in the structure of food web networks among many different types of ecosystems.[66][67]

Scaling laws, complexity, choas, and patterned correlates are common features attributed to food web structure.[68][69]

Food webs are complex. Complexity is a measure of an increasing number of permutations and it is also a metaphorical term that conveys the mental intractability or limits concerning unlimited algorithmic possibilities. In food web terminology, complexity is a product of the number of species and connectance.[70][71][72] Connectance is "the fraction of all possible links that are realized in a network".[73]:12917 These concepts were derived and stimulated through the suggestion that complexity leads to stability in food webs, such as increasing the number of trophic levels in more species rich ecosystems. This hypothesis was challenged through mathematical models suggesting otherwise, but subsequent studies have shown that the premise holds in real systems.[70][74]

At different levels in the hierarchy of life, such as the stability of a food web, "the same overall structure is maintained in spite of an ongoing flow and change of components."[75]:476 The farther a living system (e.g., ecosystem) sways from equilibrium, the greater its complexity.[75] Complexity has multiple meanings in the life sciences and in the public sphere that confuse its application as a precise term for analytical purposes in science.[72][76] Complexity in the life sciences (or biocomplexity) is defined by the "properties emerging from the interplay of behavioral, biological, physical, and social interactions that affect, sustain, or are modified by living organisms, including humans".[77]:1018

Several concepts have emerged from the study of complexity in food webs. Complexity explains many principals pertaining to self-organization, non-linearity, interaction, cybernetic feedback, discontinuity, emergence, and stability in food webs. Nestedness, for example, is defined as "a pattern of interaction in which specialists interact with species that form perfect subsets of the species with which generalists interact",[78]:575 "—that is, the diet of the most specialized species is a subset of the diet of the next more generalized species, and its diet a subset of the next more generalized, and so on."[79] Until recently, it was thought that food webs had little nested structure, but empirical evidence shows that many published webs have nested subwebs in their assembly.[80]

Food webs are complex networks. As networks, they exhibit similar structural properties and mathematical laws that have been used to describe other complex systems, such as small world and scale free properties. The small world attribute refers to the many loosely connected nodes, non-random dense clustering of a few nodes (i.e., trophic or keystone species in ecology), and small path length compared to a regular lattice.[73][81] "Ecological networks, especially mutualistic networks, are generally very heterogeneous, consisting of areas with sparse links among species and distinct areas of tightly linked species. These regions of high link density are often referred to as cliques, hubs, compartments, cohesive sub-groups, or modules...Within food webs, especially in aquatic systems, nestedness appears to be related to body size because the diets of smaller predators tend to be nested subsets of those of larger predators (Woodward & Warren 2007; YvonDurocher et al. 2008), and phylogenetic constraints, whereby related taxa are nested based on their common evolutionary history, are also evident (Cattin et al. 2004)."[82]:257 "Compartments in food webs are subgroups of taxa in which many strong interactions occur within the subgroups and few weak interactions occur between the subgroups. Theoretically, compartments increase the stability in networks, such as food webs."[58]

Food webs are also complex in the way that they change in scale, seasonally, and geographically. The components of food webs, including organisms and mineral nutrients, cross the thresholds of ecosystem boundaries. This has led to the concept or area of study known as cross-boundary subsidy.[59][60] "This leads to anomalies, such as food web calculations determining that an ecosystem can support one half of a top carnivore, without specifying which end."[61] Nonetheless, real differences in structure and function have been identified when comparing different kinds of ecological food webs, such as terrestrial vs. aquatic food webs.[83]

Victor Summerhayes and Charles Elton's 1923 food web of Bear Island (Arrows point to an organism being consumed by another organism).

Food webs serve as a framework to help ecologists organize the complex network of interactions among species observed in nature and around the world. One of the earliest descriptions of a food chain was described by a medieval Afro-Arab scholar named Al-Jahiz: "All animals, in short, cannot exist without food, neither can the hunting animal escape being hunted in his turn."[84]:143 The earliest graphical depiction of a food web was by Lorenzo Camerano in 1880, followed independently by those of Pierce and colleagues in 1912 and Victor Shelford in 1913.[85][86] Two food webs about herring were produced by Victor Summerhayes and Charles Elton[87] and Alister Hardy[88] in 1923 and 1924. Charles Elton subsequently pioneered the concept of food cycles, food chains, and food size in his classical 1927 book "Animal Ecology"; Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text.[89] After Charles Elton's use of food webs in his 1927 synthesis,[90] they became a central concept in the field of ecology. Elton[89] organized species into functional groups, which formed the basis for the trophic system of classification in Raymond Lindeman's classic and landmark paper in 1942 on trophic dynamics.[16][37][91] The notion of a food web has a historical foothold in the writings of Charles Darwin and his terminology, including an "entangled bank", "web of life", "web of complex relations", and in reference to the decomposition actions of earthworms he talked about "the continued movement of the particles of earth". Even earlier, in 1768 John Bruckner described nature as "one continued web of life".[3][92][93][94]

Interest in food webs increased after Robert Paine's experimental and descriptive study of intertidal shores[95] suggesting that food web complexity was key to maintaining species diversity and ecological stability. Many theoretical ecologists, including Sir Robert May[96] and Stuart Pimm,[97] were prompted by this discovery and others to examine the mathematical properties of food webs.

The 18th annual Webby Awards for 2014 was held at Cipriani Wall Street in New York City on May 19, 2014, which was hosted by comedian and actor Patton Oswalt.[1] The awards ceremony was streamed live at the Webby Awards website.

Lifetime Achievement was awarded to Lawrence Lessig for his work with intellectual property be co-founding Creative Commons and the person of the year was the artist Banksy.[2]

(from http://winners.webbyawards.com/2014)

Winners and nominees are generally named according to the organization or website winning the award, although the recipient is, technically, the web design firm or internal department that created the winning site and in the case of corporate websites, the designer's client. Web links are provided for informational purposes, both in the most recently available archive.org version before the awards ceremony and, where available, the current website. Many older websites no longer exist, are redirected, or have been substantially redesigned.

If you’ve already invested in a bunch of code in another framework, or if you have specific requirements that would be better served by Angular or React or something else, Predix UI is still here to help you. Jump over to our documentation site and start using the Predix UI components to speed up your work.

More reading:

Mess with demos and read more about Predix UI on our websiteRead Rob Dodson’s “The Case For Custom Elements: Part 1” and “Part 2” for some great technical and architecture info on custom elements, one half of the web component standardsRead about px-vis, Predix UI’s charting framework designed to visualize millions of streaming data points for industrial internet application

Best Website Desinging Companies in India are as follows:-


  •      1.       http://troikatech.co/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/
    2.       http://brandlocking.in/
    3.       http://leadscart.in/
    4.       http://godwinpintoandcompany.com/
    5.       http://webdesignmumbai.review/
    6.       http://webdevelopmentmumbai.trade/
    7.       http://wordpresswebsites.co.in
    8.       http://seoservicesindia.net.in/
    9.       http://priusmedia.in
    10.   http://godwinpintoandcompany.com/
    11.   http://clearperceptionscounselling.com/
    12.   http://gmatcoachingclasses.online/
    13.   http://troikatechbusinesses.com/
    14.   http://troikaconsultants.com/
    15.   http://webdesignmumbai.trade/
    16.   http://webdesignmumbai.trade/
    17.   http://troikatechservices.in/
    18.   http://brandlocking.com/wp-admin
    19.   http://kubber.in/
    20.   http://silveroakvilla.com/
    21.   http://igcsecoachingclasses.online/
    22.   http://priusmedia.in/
    23.   http://troikatechbusinesses.com/

    Call them for Best offers India and International.

Read More

Contact Details

404, B-70, Nitin Shanti Nagar Building,

Sector-1, Near Mira Road Station, 

Opp. TMT Bus Stop, 

Thane – 401107

NGO Website Designing 


Troika Tech Services


WordPress Development Company in Mumbai

RB